On the Second Order Optimality Conditions for Optimization Problems with Inequality Constraints
نویسنده
چکیده
A nonlinear optimization problem (P) with inequality constraints can be converted into a new optimization problem (PE) with equality constraints only. This is a Valentine method for finite dimensional optimization. We review second order optimality conditions for (PE) in connection with those of (P). A strictly complementary slackness condition can be made to get the property that sufficient optimality conditions for (P) imply the same property for (PE). We give some new results (see Theorems 3.1, 3.2 and 3.3) .Without any assumption, a counterexample is given to show that these conditions are not equivalent.
منابع مشابه
Regularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz. Necessary optimality conditions and regularity conditions are given. Our approach are based on the Michel-Penot subdifferential.
متن کاملMangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
متن کاملSecond Order Optimality Conditions for Semilinear Elliptic Control Problems with Finitely Many State Constraints
This paper deals with necessary and sufficient optimality conditions for control problems governed by semilinear elliptic partial differential equations with finitely many equality and inequality state constraints. Some recent results on this topic for optimal control problems based upon results for abstract optimization problems are compared with some new results using methods adapted to the c...
متن کاملSequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملSecond-Order Necessary and Sufficient Optimality Conditions for Optimization Problems and Applications to Control Theory
This paper deals with a class of nonlinear optimization problems in a function space, where the solution is restricted by pointwise upper and lower bounds and by finitely many equality and inequality constraints of functional type. Second-order necessary and sufficient optimality conditions are established, where the cone of critical directions is arbitrarily close to the form which is expected...
متن کامل